78 research outputs found

    Deep Learning-based Polyp Detection in Wireless Capsule Endoscopy Images

    Get PDF
    Gastrointestinal (GI) system diseases have increased significantly, where colon and rectum cancer is considered the second cause of death in 2020. Wireless Capsule Endoscopy (WCE) is a revolutionary procedure for detecting Colorectal lesions. It was automatically used to detect the polyps, multiple SB lesions, bleeding, and Ulcer. The acquired video by the WCE can be processed using a Computer-Aided Diagnosis (CAD) system. However, such videos suffer several problems, including burling, high illumination. and distortion. These effects obligate the development of image processing techniques of high accuracy in detection using deep learning-based segmentation. In this paper, a transfer learning-based U-Net was proposed to transfer the knowledge between the medical images in the training phase and the subsequent segmentation using transfer learning to achieve better results and high accuracy results compared to other related studies. The improvement is done by using an algorism written in python code The results showed average segmentation accuracy of 98.67

    Modified Canny Detector-based Active Contour for Segmentation

    Get PDF
    In the present work, an integrated modified canny detector and an active contour were proposed for automated medical image segmentation. Since the traditional canny detector (TCD) detects only the edge’s pixels, which are insufficient for labelling the image, a shape feature was extracted to select the initial region of interest ‘IROI’ as an initial mask for the active contour without edge (ACWE), using a proposed modified canny detector (MCD). This procedure overcomes the drawback of the manual initialization of the mask location and shape in the traditional ACWE, which is sensitive to the shape of region of region of interest (ROI). The proposed method solves this problem by selecting the initial location and shape of the IROI using the MCD. Also, a post-processing stage was applied for more cleaning and smoothing the ROI. A practical computational time is achieved as the proposed system requires less than 5 minutes, which is significantly less than the required time using the traditional ACWE. The results proved the ability of the proposed method for medical image segmentation with average dice 87.54%

    Modified Canny Detector-based Active Contour for Segmentation

    Get PDF
    In the present work, an integrated modified canny detector and an active contour were proposed for automated medical image segmentation. Since the traditional canny detector (TCD) detects only the edge’s pixels, which are insufficient for labelling the image, a shape feature was extracted to select the initial region of interest ‘IROI’ as an initial mask for the active contour without edge (ACWE), using a proposed modified canny detector (MCD). This procedure overcomes the drawback of the manual initialization of the mask location and shape in the traditional ACWE, which is sensitive to the shape of region of region of interest (ROI). The proposed method solves this problem by selecting the initial location and shape of the IROI using the MCD. Also, a post-processing stage was applied for more cleaning and smoothing the ROI. A practical computational time is achieved as the proposed system requires less than 5 minutes, which is significantly less than the required time using the traditional ACWE. The results proved the ability of the proposed method for medical image segmentation with average dice 87.54%

    Wireless capsule gastrointestinal endoscopy: direction of arrival estimation based localization survey

    Get PDF
    One of the significant challenges in Capsule Endoscopy (CE) is to precisely determine the pathologies location. The localization process is primarily estimated using the received signal strength from sensors in the capsule system through its movement in the gastrointestinal (GI) tract. Consequently, the wireless capsule endoscope (WCE) system requires improvement to handle the lack of the capsule instantaneous localization information and to solve the relatively low transmission data rate challenges. Furthermore, the association between the capsule’s transmitter position, capsule location, signal reduction and the capsule direction should be assessed. These measurements deliver significant information for the instantaneous capsule localization systems based on TOA (time of arrival) approach, PDOA (phase difference of arrival), RSS (received signal strength), electromagnetic, DOA (direction of arrival) and video tracking approaches are developed to locate the WCE precisely. The current article introduces the acquisition concept of the GI medical images using the endoscopy with a comprehensive description of the endoscopy system components. Capsule localization and tracking are considered to be the most important features of the WCE system, thus the current article emphasizes the most common localization systems generally, highlighting the DOA-based localization systems and discusses the required significant research challenges to be addressed

    DeepLab V3+ Based Semantic Segmentation of COVID -19 Lesions in Computed Tomography Images

    Get PDF
    Abstract- Coronavirus 2019 spreads rapidly worldwide causing a global epidemic. Early detection and diagnosis of COVID-19 is critical for treatment as it causes respiratory syndrome appears in the chest medical images, such as computed tomography (CT) images, and X-ray images. The CT images are more sensitive and have more details compared to the X-ray images. Thus, automated segmentation plays an imperative role in detecting, diagnosing, and determining the spreading of COVID-19. In this paper, the DeepLabV3+ combined with MobileNet-V2 model was implemented. To validate this combination, we conducted a comparative study between the DeepLabV3+ variants by its combination with MobileNet-V2 against DeepLabV3+ combined with different CNN, namely ResNet-18, and ResNet50. Also, a comparative study with the basic traditional U-Net and modified Alex for segmentation was carried out. The experimental results showed the superiority of the using DeepLabV3+ combined with MobileNet-V2 for COVID-19 segmentation by achieving 97.5% mean accuracy, 95.2% sensitivity, 99.7% specificity, 99.7% precision, 99.3 % weighted Jaccard coefficient, and 97.5% weighted dice coefficient

    Discrete wavelet transform based freezing of gait detection in Parkinson's disease

    Get PDF
    Wearable on body sensors have been employed in many applications including ambulatory monitoring and pervasive computing systems. In this work, a wearable assistant has been created for people suffering from Parkinson’s disease (PD), specifically with the Freezing of Gait (FoG) symptom. Wearable accelerometers were placed on the person’s body and used for movement measure. When FoG is detected, a rhythmic audio signal was given from the wearable assistant to motivate the wearer to continue walking. Long term monitoring results in collecting huge amounts of complex raw data; therefore, data analysis becomes impractical or infeasible resulting in the need for data reduction. In the present study, Discrete Wavelet Transform (DWT) has been used to extract the main features inherent in the key movement indicators for FoG detection. The discrimination capacities of these features were assessed using, i) Support Vector Machine (SVM) using a linear kernel function, and ii) Artificial Neural Network (ANN) with a two-layer feed-forward with hidden layer of 20 neurons that trained with conjugate gradient back- propagation. Using these two different machine learning techniques, we were capable of detecting FoG with an accuracy of 87.50% and 93.8%, respectively. Additionally, the comparison between the extracted features from DWT coefficients with those using Fast Fourier Transform (FFT) established accuracies of 93.8% and 81.3%, respectively. Finally, the discriminative features extracted from DWT yield to a robust multidimensional classification model compared to models in the literature based on a single feature. The work presented paves the way for reliable, real-time wearable sensors to aid people with PD

    Nonrigid Medical Image Registration using Adaptive Gradient Optimizer

    Get PDF
    Medical image registration has a significant role in several applications. It has sequential processes, including transformation, similarity metric calculation, diffusion regularization, and optimization of the transformation parameters (i.e., rotation, translation, and shear). The optimization process for determining the optimal set of the transformation vectors is considered the main stage affecting the performance of the registration process. Hence, medical image registration can be deliberated as an optimization problem for computing the geometric transformations to realize maximum similarity between the moving image and the fixed one. In this work, a mono-modal nonrigid image registration using B-spline is designed for the alignment of Computed Tomography (CT) images of thorax using Adaptive Gradient algorithm (AdaGrad) optimizer. In addition, a comparative study with other first order optimizers, such as Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (Adam) algorithm (AdaMaX), AdamP, and RangerQH were conducted. Also, a comparison with the limited memory Broyden-Fletcher-Goldfarb-Shannon (LBFGS) as a second order optimizer was also carried out. The results showed the superiority of the AdaGrad optimizer by 56.99% and 48.37% improvement in the compared to the target registration error (TRE) compared to the SGD, and the LBFGS optimizer, respectively

    A novel optimized neutrosophic k-means using genetic algorithm for skin lesion detection in dermoscopy images

    Get PDF
    This paper implemented a new skin lesion detection method based on the genetic algorithm (GA) for optimizing the neutrosophic set (NS) operation to reduce the indeterminacy on the dermoscopy images. Then, k-means clustering is applied to segment the skin lesion regions

    A cascaded classification-segmentation reversible system for computer-aided detection and cells counting in microscopic peripheral blood smear basophils and eosinophils images

    Get PDF
    Computer-aided image analysis has a pivotal role in automated counting and classification of white blood cells (WBCs) in peripheral blood images. Due to their different characteristics, our proposed approach is based on investigating the variations between the basophils and eosinophils in terms of their color histogram, size, and shape before performing the segmentation process. Accordingly, we proposed a cascaded system using a classification-based segmentation process, called classification-segmentation reversible system (CSRS). Prior to applying the CSRS system, a Histogram-based Object to Background Disparity (HOBD) metric was deduced to determine the most appropriate color plane for performing the initial WBC detection (first segmentation). Investigating the local histogram features of both classes resulted in a 92.4% initial classification accuracy using the third-degree polynomial support vector machine (SVM) method. Subsequently, in the proposed CSRS approach, transformation-based segmentation algorithms were developed to fit the specific requirements of each of the two predicted classes. The proposed CSRS system is used, where the images from an initial classification process are fed into a second segmentation process for each class separately. The segmentation results demonstrated a similarity index of 94.9% for basophils, and 94.1% for eosinophils. Moreover, an average counting accuracy of 97.4% for both classes was achieved. In addition, a second classification was carried out after applying the CSRS, achieving a 5.2% increase in accuracy compared to the initial classification process
    • …
    corecore